Enrollment No:	Exam Seat No:
-----------------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Differential and Integral Calculus

Subject Code: 4SC04DIC1 Branch: B.Sc. (Physics)

Semester: 4 Date: 26/04/2018 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Evaluate: $\int_{1}^{2} \int_{0}^{1} xy \ dx \ dy$	(02)
	b)	Evaluate: $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} dx dy dz$.	(02)
	c)	A particle moves along the $x = t^3 + 1$, $y = t^2$, $z = 2t + 5$, where t is the time. Find the component of its velocity at time $t = 1$.	(02)
	d)	Prove that $\operatorname{curl}(\operatorname{grad}\phi) = \overline{0}$ where ϕ is scaler valued function.	(02)
	e)	When a vector function \overline{F} is irrotational?	(01)
	f)	State Green's Theorem.	(01)
	g)	State Stoke's Theorem.	(01)
	h)	Write a formula of curvature in polar form.	(01)
	i)	Define: Node.	(01)
	j)	What are the conditions to check the curve $f(x, y) = 0$ having a double point as	(01)
		cusp?	
Attempt	any f	our questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a)	Find the directional derivatives of $\phi = 2xy^2 + yz^2$ at the point $(2, -1, 1)$ in the direction of the vector $i + 2j + 2k$.	(05)
	b)	Find divergence and curl of $\bar{v} = (xyz)i + (3x^2y)j + (xz^2 - y^2z)k$ at $(2, -1, 1)$.	(05)
	c)	Find value of m if $\overline{F} = (x + 2y)i + (my + 4z)j + (5z + 6x)k$ is solenoidal.	(04)
Q-3	- /	Attempt all questions	(14)
	a)	Evaluate $\int_c \bar{F} d\bar{r}$ where $\bar{F} = (x^2 + y^2)i - 2xyj$ and c is rectangle in the $xy -$	(07)
		plane bounded by $y = 0$, $x = a$, $y = b$, $x = 0$.	, ,
	b)	Find work done in moving a particle from $A(1,0,1)$ to $B(2,1,2)$ along the straight line AB in the force field $\bar{F} = x^2i + (x - y)j + (y + z)k$.	(07)
Q-4		Attempt all questions	(14)
V -4	a)	Using polar coordinates, find $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$	(05)
		ů ů	
	b)	Evaluate: $\int_{1}^{3} \int_{1}^{1} \int_{0}^{\sqrt{xy}} xyz \ dx \ dy \ dz$.	(05)

	c)	Evaluate: $\iint_R x \sqrt{1-x^2} dx dy$, where $R: 0 \le x \le 1, 2 \le y \le 3$.	(04)
Q-5		Attempt all questions	(14)
	a)	Evaluate $\iint_R y dx dy$ where R is region bounded by the parabolas $y^2 = 4x$ and	(05)
	b)	$x^2 = 4y$. Evaluate $\iint_R \sqrt{x + y} \ dx \ dy$, where <i>R</i> is the parallelogram bounded by the lines	(05)
	D)	Evaluate $\iint_R \sqrt{x + y} \ dx \ dy$, where k is the parameters and bounded by the lines $x + y = 0, x + y = 1, 2x - 3y = 0, 2x - 3y = 4.$	(05)
	c)	Change the order of integration $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy \ dx$.	(04)
Q-6		Attempt all questions	(14)
	a)	Verify Green's theorem for $\int_{c} [(x-y)dx + 3xydy]$, where c is the boundary of	(09)
		the region bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$.	
	b)	Using Stoke's theorem for the vector field $\overline{F} = (x + y)i + (y + z)j - xk$ and S is the surface of the plane $2x + y + z = 2$ which is in the first octant.	(05)
Q-7		Attempt all questions	(14)
Q-7	a)	Solve: $p \tan x + q \tan y = \tan z$.	(05)
	b)	Solve: $(mz - ny)p + (nx - lz)q = ly - mx$.	(05)
	c)	Form a partial differential equation by eliminating arbitrary constants from the equation $z = a(x + y) + b$ where a, b are constants.	(04)
Q-8		Attempt all questions	(14)
Q-0	a)	3	(05)
	a)	Prove that radius of curvature for the curve $y = f(x)$ is $\frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$.	(03)
	b)	Find radius of curvature for the curve $r = a(1 - \cos\theta)$.	(05)
	c)	Find the double points of the curve $x^3 + y^3 - 12x - 27y + 70 = 0$	(04)
	- /		(-)

